Bioinformatics

doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Project Proposal

Implementation and Evaluation of Dynamic de
Bruijn Graph by Adding Dynamic Edges

Apurv Amrutkar' , Keyur Baldha', Sakshi Dubey '

1Computer & Information Science & Engineering, University of Florida, Gainesville, 32306

*To whom correspondence should be addressed.
Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

The production of millions of reads from DNA samples for genome sequencing is now possible due to
rapid advancement in sequencing technologies. De Bruijn graph is a prominent data structure used for the
efficient representation of this genome sequence. The barriers currently faced in de Bruijn implementation
is its memory utilization and runtime. A space and time efficient fully dynamic implementation of de Bruijn
graphs was proposed in “Fully Dynamic de Bruijn Graphs” by Belazzougui et. al (2016). We intend to
implement the data structure presented in this paper and focus on the approach of addition and removal
of edges dynamically, thereby improving the total memory usage and the running time.

1 Introduction

The curiosity to explore more about human genome has lead to the
exponential rise in the creation of DNA sequencing technologies. DNA
sequencing can be defined as the process of figuring out the accurate order
of nucleotides within a DNA molecule. Initially, early DNA sequencing
methodologies were used to sequence human genome. The major bre-
akthrough came with the first generation sequencing when Sanger and
Ilumina sequencing methodologies evoked a huge interest of researchers
in the domain of DNA sequencing. Consequently, the amount of seque-
nced data generated was gradually rising. As soon as the second generation
sequencing technologies came into existence, researchers observed a rapid
advancement in the methods of gathering sequence data. One of the first
major commercial success was ’next-generation sequencing’ technology.
The ongoing development in sequencing technologies began to face an
efficiency challenge. The current challenge included the efficient proces-
sing of high volume of reads and shorter read lengths for de novo assembly.
The huge volume of reads, along with short read length, high coverage and
sequencing errors, poses a great challenge to genome assembly. The adva-
ncements done in space feasibility for de novo assembly didn’t match the
requirements of the gathered sequenced data during the second generation
sequencing , and in-practice advancements in technology didn’t match the
memory requirements of tools as well.

In microbiology, one of the key challenge has been assembling a
genome from a huge amount of reads from various DNA sequences. In
bioinformatics, de Bruijn graphs were used to cope with the memory com-
plexity of DNA sequencing of human genome. The de Bruijn graph data

structure has certainly proven useful in reducing the time and space com-
plexity for construction of DNA sequences. The de Bruijn graph is a data
structure which plays an important role in second-generation sequencing
applications and tends to yield a large number of short sequence fragments
(Conway and Bromage,2011).

K*" order de Bruijn graph for a set of sequences S =
{51, S2,53...5¢} for a given alphabet X of size o, is defined as the
directed graph whose nodes are the distinct k& — tuples in those strings in
which there is an edge from w to v . If there is a (k + 1) — tuple in those
strings whose prefix of length k is u and whose suffix of length & is v then
the generalized construction steps for de Bruijn graph is as follows:

e Choose a value of k.

e Foreach k + 1 — mer that exists in any sequence create an edge with
one vertex labeled as the prefix and one vertex labeled as suffix.

e Glue all vertices that have the same label.

(Pevzner,Tang&Tesler,2004)

For sequence assembly, the set S is a collection of overlapping short
DNA sequences, called reads. The task is to find an ordering of these reads
such that a longer DNA sequence containing these reads is revealed. The
longer sequence should correspond to a Eulerian walk of the de Bruijn
graph. The static de Bruijn graph was widely used in sequencing DNA.
Bloom Filter encoding technique that uses static de Bruijn graph and decre-
ases the amount of memory needed by an order of magnitude to store the
graph and an additional data structure for better false positive detection was
proposed by (Chikhi, R. and Rizk, G.,2013). A Bloom filter based appro-
ach proposed by (Salikhiv et al,2014), helped in false positive detection
as well as further was able to reduce memory by 30-40% using cascading

© The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

“'main edited” — 2017/12/9 — page 1 — #1

Amrutkar et al.

Bloom Filter. The other data structure is by (Ye et al,2011), which stores
only a subset of nodes of the de Bruijn graph to save memory. Sparse
Assembler 1 also works on the methodology to skip a certain number
of immediate k-mers. Further, a succinct de Bruijn graph representation
using Burrows Wheeler Transaform by (Bowe et al,2012) could repre-
sent graph only in 4m + o(m)bits. Though de Bruijn graph modified
the DNA sequencing technologies to a great extent yet De Bruijn graph
was yet to achieve some significant benchmarks. One of the major draw-
back of using de Bruijn graph in practice is the high memory operation
for large genome sequences. The human genome encoded in a de Bruijn
graph with a k-mer size of 27 requires 15GB to store the node seque-
nces (Chikhi, R. and Rizk, G.,2013). Another drawback of static De Bruijn
Graph is that it needs to be entirely reconstructed if there is any change in
the structure of the De Bruijn graph.

The motivation for fully dynamic data structure was arrived to avoid
the reconstruction of whole De Bruijn graph in order to add or delete
any edges/edges in the existing De Bruijn graph. The concept of dyna-
mically addition and removal of edges/vertices has significantly reduced
the memory consumption. In this project, we aim to particularly deal
with the addition and removal of edges in a dynamic De Bruijn graph. In
(Belazzougui et al,2016) a fully dynamic data structure of de Bruijn graph
has proposed a combination of Rabin-Karp hashing and minimal perfect
hashing functions to represent k-mers. The proposed implementation in
this paper uses two algorithms. One of the most important used algorithm
is the hashing technique. This paper uses a combination of Rabin-Karp and
minimal perfect hashing. Another important pillar of this paper is Forest
Cover Method. This paper uses forest cover for rooted tree components to
store edge information using IN, OUT matrices.

2 Related Work

In order to deal with the space complexity in processing DNA sequences,
many different methods have been proposed. One of the initial strate-
gies to process DNA sequences was to use the De Bruijn graph. One of
the possibilities of decreasing memory usage is by using succinct data
structures. A succinct data structure is one that uses an amount of space
that is bounded closely by the theoretical minimum while still supporting
queries efficiently (Conway and Bromage,2011). The representations in
(Conway and Bromage,2011) were typical of sets of integers that use the
theoretical minimum space bound. The authors further proposed a succinct
de Bruijn graph data structure using bitmaps with rank and select opera-
tions performed near this minimum bound. (Bowe et al,2012) proposed a
succinct representation based upon Burrows-Wheeler transforms (Burrows
and Wheeler, 1994) where the graph could be represented in 4m + o(m)
bits,m being the number of edges. (Boucher et al,2015) augmented the
previous work to support new operations that let them change the order
(value of K') and thus effectively represented all the the de Bruijn gra-
phs of the order up to the certain value of K in a single data structure.
(Pandey et al,2017) have discussed in detail about the compact designing
of the weighted De Bruijn graph. Their outcome resulted in zero errors
and reduced the space requirements by less than 18-28 % than the original
requirement. One of the drawbacks of this approach is that this method tra-
des off with accuracy to increase the space efficiency. (Armas et al,2016)
has also done work in the domain of DNA sequencing using De Bruijn
graph and k-mers. It described how k-mer mapping which is an integral
process for many assembly methods counts towards increasing the compu-
tational challenge which in turn increases its main memory consumption.
(Armas et al,2016) discussed about the indexing methods to deal with the
k-mers. They proposed a model to make a comparison in performances
of hashing index structures in an ad-hoc cost model. These indexes have
been used for the detection of duplicate k-mers and thus it improves the

execution time. They have done a significant contribution in the domain of
bioinformatics by achieving significant performance gains with the help
of reducing RAM requirements. We observe that most of the works which
have been done in the field of succinct de Bruijn graphs are trading off
with its accuracy. Thus this drawback limits the use of succinct de Bruijn
graphs in many practical implementations of DNA sequencing.

Another efficient use of de Bruijn graph has been proposed using
Bloom filters in various works. A Bloom filter is a space-efficient, probabi-
listic data structure built upon multiple hash functions that are used to test
whether an element is in a set, with the possibility of false positives. The
use of hash functions to represent k-mers which correspond to nodes in
the graph is one of the approaches to reduce the memory usage. There are
various papers that decrease the memory usage of de Bruijn Graphs. The de
Bruijn graph which is discussed in (Chikhi, R. and Rizk, G.,2013) throws
light on the use of bloom filters. It describes a technique that requires less
space in comparison to the current representations. The paper proposed
by (Chikhi, R. and Rizk, G.,2013) describes about the encoding technique
based on a Bloom filter. One of the major concepts which have been high-
lighted in this paper is the retrieval method of distinguished k-mers. The
paper also discusses the method to cope with sequencing errors. It favors
in keeping only the solid k-mers to reduce the possible sequencing errors.
It also discusses a way to cope with reverse implementation. Apart from
this approach, it also discusses a traversal algorithm to make a record of
previously visited nodes. This recording structure also serves as space-
efficient algorithm since it only accounts for k-mer subsets information.
Their algorithm uses an additional structure to remove critical false positi-
ves. An important drawback of this representation is that the Bloom filter
introduces false nodes and false branching. Though it focuses on main-
taining a separate module for false positives which may become a source
of false branching, yet there is still a scope for a more efficient method
to deal with the false positives. Another work related to Bloom filter was
presented by (Salikhiv ef al,2014) by changing the representation of false
positives. They applied a cascade of Bloom filters to represent a set of
false positives. This new method required 30% to 40% less memory than
(Chikhi, R. and Rizk, G.,2013). They added a new data structure to detect
false positives and were able to perform a complete de novo assembly of
the human genome using 5.7 GB of memory with the help of a softw-
are "Minia’. The algorithm suggests that the input set of k-mers will be
written on the disk. Afterwards, we choose either the k-mer or its reverse
complement for computing the calculations. It will be selected in a lexi-
cographically smaller order. The disadvantage of using Bloom filter based
approaches is that the de Bruijn graph creation is semi-dynamic, that is it
only supports dynamic insertions.

There are various other works which came up with an alternative to
reduce the space complexity. Not storing the entire de Bruijn graph is also
one of the possibilities to decrease the memory usage by a huge factor. This
is a sparse and compact representation of de Bruijn graph. An approach
proposed by (Ye et al,2011) involves skipping some fraction of the K-mers
or reads, thus reducing the size of the overall assembly graph necessary to
capture the information. In their approach the K-mers stored in the graph
attempts to approximate a uniform K-mer sampling of the genome, rather
than based on lexicographic ordering. Another technique which can be
utilized from the succinct de Bruijn graph is data compression. In this
approach, a statistical method is used to compress a character. In an exten-
sion to this approach (Ye et al SparseAssembler2,2011) exploited the idea
of finding the links between K-mers and then traverse the graph. Thus to
realize this new idea they restricted themselves to only some k-mers which
might not even be overlapping ones, and build the links between these k-
mers indicated by the reads. Their approach improves the space usage
by almost 90%. (Md Mahfuzer Rahman et a/,2017) gave a hashing based
approach to decrease the memory usage with O false positive rates. The
algorithm proposed by (Md Mahfuzer Rahman et a/,2017)uses auxiliary

“'main edited” — 2017/12/9 — page 2 — #2

short Title

data structures where 6 bytes are used to store the k — mer information.
HaVec proposed by (Md Mahfuzer Rahman er al,2017) is used to achieve
a balance between the running time and memory consumption. It also uses
a hash table method along with an auxiliary vector data structure to com-
pute De Bruijn graph. The most noteworthy benefit of using HaVec is that
it exhibits no false positive error. A lot of work has been done using parallel
algorithms to reduce the space complexity. (Chikhi ez al,2016) proposed a
parallel sequencing algorithm that distributes the input based on a hashing
technique. They also proposed a tool bcalm?2 in order to achieve a com-
pact de Bruijn graph. It has been successful in reducing the computational
load of the de Bruijn graph to roughly an hour with the help of 3 GB of
memory only. They also used bcalm2 in generating the compacted graphs
from raw data in less than 2 days and 40 GB of memory on a single mach-
ine. Bcalm?2 has been quite successful to reduce the memory consumption
with the help of parallel algorithms. In bioinformatics, reducing the load
on external memory can also be an alternative in reducing the memory
load. One of the similar work has been done by (Bonizzoni et al,2016).
They have proposed a disk-based algorithm in order to compute the string
graphs in external memory: the light string graph(LSG). This technique
is dependent on the representation of the FM-index. FM index has been
used to save a partial amount of main memory requirement that is inde-
pendent of the size of the data set. The whole analysis contributed towards
a significant decrease in the memory usage though it has caused a mode-
rate increase in the running time. There is another proposed work on the
parallel algorithm by (Flick et al,2014). They have worked on the wea-
kly connected components in the de Bruijn graph. They have presented a
distributed memory algorithm to locate the connected subgraphs to mini-
mize the communication volume. Their method achieved a runtime of 22
min with the help of 421 GB uncompressed FASTQ dataset. Their solu-
tion can be applied as a generalized method to find the related components
in undirected De Bruijn graph. Most of the discussed related work use
the static de Bruijn graph which requires the reconstruction of whole de
Bruijn graph in order to accomodate any change in the graph structure.
This ignited a motivation for Dynamic De Bruijn graph.

Finally, various researches got inclined towards making a dynamic
version of the de Bruijn graph to avoid the reconstruction of graphs in order
to introduce any change in the existing graph. (Belazzougui et al,2016)
have proposed an approach to achieve the dynamicity by building a De
Bruijn graph structure from nodes of unique length-k fragments, or k-
mers, of a genome. Their approach proposes a combination of Karp-Rabin
hashing and minimal perfect hashing functions to represent k-mers. In
their approach they store the de bruijn in 2 binary matrices I N and OUT'.
They also propose creation of an undirected graph called as forest cover
for achieving the O false positive rate.

In our paper, the proposed data structure implements only a partial
dynamic de Bruijn graph in reference to (Belazzougui et al,2016) and
returns exact answers to membership queries and gives better theoretical
bounds provided that the number of connected components in the graph
is small. The sole motivation of this paper is to implement one of the
solutions suggested by the (Belazzougui et al,2016) to reduce the memory
consumption. This paper focuses on the implementation of the dynamic
addition and removal of edges in the de Bruijn graph. This is achieved by
implementing Hashing technique and Forest cover method. The hashing
technique includes the combination of SHA1 and Minimal Perfect Hashing
to represent k-mers while the Forest cover method is used to store edge
information using /N OUT matrices. This paper aims to significantly
contribute in the domain of bioinformatics to cope with the space com-
plexities issues for sequencing DNA with the help of Dynamic De Bruijn
graph.

3 Description and Implementation of Data
Structure

3.1 Overview

In this section we discuss about the technical formulas we are
going to use in this project. The Lemmas are as follows:
Lemma 1: Given a static set N of n k-tuples over an alphabet X of size
o, with high probability in O(kn) expected time we can build a function f :

vk — 0, ..., n-1 with the following propoerties

e when its domain is restricted to N, fis injective;

e we can store fin O(n+log k + log o) bits

e given a k-tuple v, we can compute f(v) in O(k) time;

e given u and v such that the suffix of u of length k-1 is the prefix of v
of length k-1, or vice versa, if we have already computed f(v) then we
can compute f(v) in O(1) time;

e deletions take O(k) amortized expected time.

Let us consider N as the node-set of a de Bruijn graph. A node in our de
Bruijn graph can be stored using the function as described in Lemma 1.
In the subsection 3.2 we describe the construction of the de Bruijn graph
data structure in a way that, given a pair of £ — tuples u and v of which
at least one is in IV, we can check whether the edge (u,v) is in the graph.
This means that, if we start with a k£ — tuple in [N, then we can explore the
entire connected component containing that £ — tuple in the underlying
undirected graph which we call the forestcover. On the other side, if
we start searching for a k — tuple not in N, then we will learn this fact
quickly as soon as we try to cross from one k — tuple in IN to another.
Thus to handle the possibility that we never try to cross such an edge we
cover the vertices with a forst of shallow rooted trees. In the forest we store
the graph such that the root of each component in the forest is stored as
k — tuple, and other nodes in this component are stored in 1+log o bits
indicating which of its which of its edges leads to its parent. The response
to a membership query to check whether a k — tuple we are considering
is indeed in the graph, we ascend to the root of the tree that contains it
and check that k — tuple is what we expect. In the subsection ahead we
have explained the implementation steps for creating the de Bruijn graph
data structure. In addition to this, we discuss about the combination of
Rabin-Karp and minimal hashing functions, algorithm on forest cover for
the tree and algorithm for dynamically updating the graph by additions or
deletions of edges.

3.2 Construction of de Bruijn Graph

Let G = (NN, E) be a de Bruijn Graph of the order k with n vertices. Let
., ac 1 be the set of edges and N = v, v1,, vn1 be the
set of vertices. In this paper we call each v; as a vertex or a k —tuple, using

E =ag,a1,...

these terms interchangeably as the vertex and the labels have a one-to-one
correspondance.

Graph G data structures is stored and maintained in two binary matri-
ces, IN and OUT, of sizen X o . I N is a binary matrix which represents
the incoming edges towards a k — tuple whereas OUT is a binary matrix
which represents outgoing edges from the k — tuple. For example, for
each k — tuple vy = cica...ci,_1a, the I N matrix stores a row of length
o such that, if there exists another k — tuple vy = bcica...cp—1 and an
edge from vy to v, then the position indexed by b of such row is set to
1. Similarly OUT binary matrix stores a row of length o where for row
vy the position indexed by a is set to 1. In the data structure for the graph
proposed in this paper, each & — tuple is uniquely mapped to a value
between 1 to n using a hash function f as described in Lemmal and
explained in section 3.3. Thus, as we are represeting values between 1 and
n we can use these in our binary matrices directly for the row label of each
k — tuple. Thus in our previous example, for the I N matrix the value

“'main edited” — 2017/12/9 — page 3 — #3

Amrutkar et al.

of IN|[f(vz)][b] would be set to 1 and similarly for the OUT matrix the
value of OUT[f (vy)][a] will be set to 1.

With the above mentioned data structure to store the graph, we can now
check whether there exists an edge from bX to Xa. Let f(bX) = 4 and
f(Xa) = j, now let us assume bX is in G and thus we check the values
for the edge between bX and X a in our I N and OUT matrices, using the
previous representation of ¢ and j. Thus, if values I N [5][b] and OUT'[i][a]
are set to 1, we can confirm that the edge is present in G. Otherwise, if any
of the two values is 0, we would the edge to be absent. Moreover, we can
note that if X is in G and OUTi][a] = 1, then we can conclude that
Xais also in G. Similarly, if Xa is in G and I N[j][b] = 1, then we can
conclude that bX is also in G. Therefore, if OUT[i][a] = IN[j][b] = 1,
then bX is in G if and only if Xa is in G. Thus we can note from this
property of our data structure of two binary matrices that, if we have a path
Z and if we confirm all edges in path Z using the I N and OUT matrix,
then either all the vertices are present in G or none of them is.

The algorithm for construction of the above matrices does simple ite-
ration on the set of k& — tuples which are created from the evaluation
genome sequence. The I N and OUT matrices are filled for a particular
k — tuple and the next k — tuple by calculating the prefix and suffix of
the k — tuples, calculating the hash values of the k — tuples as described
in the overview and accordingly updating the particular row of I N and
OUT matrices as we have previously explained.

If any one of the above matrix element is O then the edge does not
exist. This algorithm, depending on the hash function may also sometimes
generate false positives in the binary matrices. Hence, if the correspon-
ding index is O, then the edge is definitely absent; otherwise, the edge is
possibly present. We then focus on maintaining proper memory usage and
detecting false positives. More accurately, we partition nodes in a graph
G’ underlying G into a forest of rooted trees of height at least klogo and
at most 3klogo. We will describe more about the partition creation using
Forest tree cover in section 3.4. We will also describe the hash functions
used for this data structure in Section 3.3. For dynamic updating of de
Bruijn graph, we describe the algorithm for additions and deletions of
edges in Section 3.6 and 3.7. We also discuss algorithm about querying
the data structure for a membership query of an edge in Section 3.5.

3.3 Hash Function

A hash function is used to convert a string into a numeric hash value. For
example for a hash function we might have hash(‘abcd)=5. We use hash
function to exploit the fact that if two strings, in our case k — tuples, are
equal, their hash values are also equal. This would help us in reducing
the space required to store the k — tuple as string, instead now would be
stored as hash values. Another advantage of this is, string matching gets
reduced to computing the hash value of the search query. Hash function
determined by the Rabin-Karp algorithm seeks to speed up the comparison
of equality of the pattern to the substrings in the text.

Let us consider a subset S of all possible strings of length £ over an
alphabet of the universe U. Given a prime P and base r[0, P1], a Rabin-
Karp hash function f is a function defined over U such that f(z1....xx) =
(z;rin; = 1)modP. f is a one-to-one minimal perfect hash function on
S defined on the universe and the range for the same is 0, ,nl.

However, there are certain problems with this approach. Firstly, as
there are a lot of strings and very few hash values, there are possibilities of
different strings having the same hash value. We can have multiple strings
in the subset S which evaluate to same hash value but the strings may
not match. Thus, there can be collision which may occur for our Rabin-
Karp hash function generated. The solution we have implemented for this
situation is to have a Rabin-Karp hash function which is injective, i.e, every
string in the subset .S would have a unique hash value. We achieve this
by using a Las Vegas algorithm. In this algorithm we construct a bitvector

B of size n initialized with all its elements set to 0. For each element v,
of S we compute f(vz) = ¢ and check the value of Bl¢]. If we find the
value to be 0 we set it to 1 and proceed to the next element in S, if the
value is already set to 1, then we have a collision for the Rabin-Karp hash
function which we are currently considering; thus we select a different f
and restart the procedure from the first element in .S. We now know that
once we finish this procedure we would have a f which is injective.

However, Rabin-Karp with Las Vegas algorithm for finding an injective
function(collision free) is good for small dataset and small value of k. After
experimenting with huge dataset, finding an injective function consumes
a lot of time, as it becomes difficult to find a perfect combination of r
and P for Rabin-Karp. Also, for higher values of k£ the computation of the
huge number takes a lot of memory space and computing time. The solution
applied for this is using SHA1 hash on the string and then only considering
last specific number of bits according to the value of k. Using the last few
bits of SHAI tackles the issue of huge number computation by Rabin-
Karp. We also check injective behavior of SHA1 hash function for only
considering the last few bits, using Las Vegas algorithm, and increment
the number of SHA1 bits to be considered in the hash. Experimentally we
get very less or no collision with SHA1 for huge sequence length.

As described in the overview of the algorithm description, and also
according to the Lemma 1 we want the hash value to be between 1 and
n, where n is the number of k — tuples in N. This is actually required
by our I N and OUT'. To achieve this we have proposed a combination of
Rabin-Karp (Karp and Rabin, 1987) and minimal perfect hashing (Hagerup
and Tholey, 2001) function.

A hash table with no collisions can be built with a technique called
as Perfect Hashing. This is only possible when we know all the keys
in advance. A minimal perfect hash function is actually a perfect hash
function which maps n keys to n consecutive integers which in our case
are the numbers from O to 1. To express this in more formal way: Suppose
j and k are elements of a set S. We consider F' as a minimal perfect
function if an only if F'(j) = F(k) implies j = k, i.e., injectivity. We
use two levels of hash functions. The first one, H(key), gets a position in
an intermediate array, G. The second function, F(d, key), uses the extra
information from G to find the unique position for the key. The scheme will
always returns a value, so it works as long as we know for sure that what we
are searching for is in the table. Otherwise, it will return bad information.
Fortunately, our forest creation as discussed in the overview would prove
an advantage over here as we are using it to detect false positives, which
can occur if we are not able to find the exact hash value for some query
string. We construct the intermediate table G for our minimum perfect
hashing function by incrementing d in F(d, key). We follow the following
steps while constructing our minimal perfect hash fucntion:

1. we place the keys into buckets according to the first hash function, H.
2. we process the buckets largest first and try to place all the keys it
contains in an empty slot of the value table using F(d=1, key). If that
is unsuccessful, we keep trying with successively larger values of d.
Since we try to find the d value for the buckets with the most items
early, they are likely to find empty spots. When we get to buckets with
justone item, we can simply place them into the next unoccupied spot.

A hash function described in the paper is outlined as GENERATEH-
ASH below.The particular functions for the algorithm are as follows

o getPrime(R) - smallest prime is returned. Such a prime may be gene-
rated with high probability in O(n) time by the method described in
(Dietzfelbinger et al., 1997).

e randomNumber(0, P - 1) - returns a uniformly distributed random
number between O and P - 1.

e rabinHash(r, P) - returns a Rabin-Karp Hash function with base r and
mod P. There is a high probability this is injective.

“'main edited” — 2017/12/9 — page 4 — #4

short Title

o isInjective(f, S) - tests whether f is injective on S.
e minimalPerfectHash(X) - returns a minimal perfect hash function on
the set X. This may be done by using the above explained method.

The algorithm for GENERATEHASH has two levels, first level finds
an injective Rabin-Karp hash function f for the set of k& — tuples. This
hash function uses the get Prime() and randomNumber() functions
as described above to generate a hash value as described previously. To
obtain an injective Rabin-Karp function for our set of strings we keep on
trying different random numbers using the random Number() function
as described above. Second level of hash function is the minimal perfect
hashing as described above. The Rabin-Karp hash function is given as
input to our minimal perfect hashing inorder to generate a map of n keys
which are numbers from O to n as described above, where n is the size of
the set of & — tuples.

3.4 Forest Construction

According to the overview of our data structure, we can run into situations
where we can have some membership queries to the graph G for vertices
which have the same hash value according to our hash function described
in 3.1, thus causing a false positive to occur. A false positive is basically
a result which incorrectly indicates that a particular condition or attribute
is present. So we focus on detecting these false positives in our forest data
structure maintaining a reasonable memory usage. We basically sample a
susbset of nodes for which we store the plain text k — tuple and connect all
the other vertices which are unsampled to the ones which are sampled. We
basically partition the vertices in the graph G’ underlying G into a forest
of trees which are rooted components, of height at least k£ lg o and at the
most 3 k lg o, where o is the size of our alphabet X size. In each forest
component after the root vertex for all other vertices we store a pointer
to its parent in the tree, this pointer takes upto 14 lg o bits per vertex,
and we sample the k — mer at the root of such forest component. In our
implementation we do not have a hard constraint on the lower bound of the
height of the forest component to be k lg o, e.g when it covers a connected
component. Thus the invariant maintained throughout forest construction
is : any forest component or a rooted tree must have height at least k lg o
and atmost 3k lg o except when the tree covers (all vertices in) a connected
component of size at most k Ig o.

Now returning back to no false positive generation in our forest data
structure implementation. We can now thus check whether a given node
vg is in G by first computing f(vz), where f is the same hash function
as described in section 3.1, and then checking and ascending at most 3
k lg o edges, thus updating vz and f(vy) as we move ahead. Once we
have reached the root of our connected component in the forest, we can
now compare the resulting & — tuple with the one we sampled at the
root to check if vy is in the graph. The current procedure for verification
of whether a vertex is present in our graph requires O(klgo) time since
computing the outer first hash value of the query, f(vz), requires O(k),
ascending the tree upwards to the root requires constant time per edge, and
thus comparing k — tuples requires O (k).

We create the forest components as described above with only root
containing the k — tuple and rest of the connected vertices as f(vz) value
with only an additional parent pointer, this is because we don’t want to
store the whole k — tuple for every vertex, as this would take too much
space. If the trees are big enough, then the sample is sparse enough that
it doesn’t add much to the overall space. On the other hand, if the trees
are shallow enough, then we can get from any vertex to the root of its tree
quickly following the procedure as described above. Thus in our undirected
graph G’ we want to choose a subgraph that is a forest of fairly big but
fairly shallow trees that together contain all the vertices in the graph.

The procedure to create the Forest F' for de Bruijn graph G is as
follows:

1. Start with a random k — tuple string and make it a root node.

2. Create the hash value of k — tuple string

3. Find neighbors using OUT matrix. For every neighbor create a
new node and set the parent pointer. Continue this procedure till we
maintain the height invariant of the forest.

4. Break off the subtree corresponding to node at position 3klogo.

5. Continue the above process until we have traversed all the k —tuples.

The algorithm for forest creation uses Breadth First Search to traverse
through the IN and OUT matrices starting with arandom k —tuple. We use
Breadth First Search as our goal of creating the forest is shallow and which
would contain maximum number of nodes. Nodes in the forest are basically
objects of class T'ree N ode which stores a parent pointer(hash value of the
parent node), height of the tree from this node, if this is a root node then we
also store the plain text & — tuple. We follow the algorithm as described
previously by maintaining the forest invariant during the traversal through
the matrices.

3.5 Membership Query for an Edge

We describe a method to query an edge in our de Bruijn data structure,
which is a combination of I N, OUT matrices, Hash — function and
the forest. Suppose the membership query is to check whether there is an
edge from bX to Xa. Letting f(bX) = i and f(Xa) = j. We now have
to first check whether node j and node ¢ in forest actually correspond to
the string b.X and X a respectively. This is achieved by ascending k parent
edges in the forest and thus checking the corresponding string generated
against the query prefix ¢ and suffix j nodes. If either of them is not
present we conclude that the edge is not present. Thus forest construction
is finally used to prove the O false positive rate, as we are confirming our
hash values generation with the string comparison. The case, if both the
nodes are present in the forest, then to check whether the edge is present,
we check the values of OUT'[¢][a] and I N [5][b]. If both values are 1, we
report that the edge is present and we say that the edge is confi

rmed by I N and OUT'; otherwise, if any of the two values is 0, we
report that the edge is absent. Moreover, note that if bX is in G and
OUTi][a] = 1, then Xa is in G as well. Symmetrically, if Xa is in G
and IN[j][b] = 1, then bX is in G as well. Therefore, if OUT[i][a] =
IN[j][b] = 1, then bX is in G if and only if X a is. This means that, if
we have a path P and if all the edges in P are confi

rmed by I N and OUT, then either all the nodes touched by P are in
G or none of them is.

3.6 Removing Dynamic Edges

In this section we describe the case of removing an edge to the graph in
our data structure. Now suppose we want to remove an edge e = (vz, vy)
where v, and vy, are the vertices in G. Similarly as described in previous
section, we first update the /N and OUT" matrices, but now we set the
values to 0 of OUT[f (vz)][a] and I N[(vy)][b] in constant time.

Now to update the forest we need to take multiple cases into conside-
ration. First, we check in O(k) time whether e is an edge in some forest
component by computing f(vy) and f(vy), checking for each vertex if
the current edge in consideration is the one that points to their parent. If e
is not in any tree we do not move ahead with our procedure, as no update is
required in the constructed forest, this case is represented in Figurel. If
the edge is present in some component of the graph, then we check the size
of each tree in which v; and vy reside in. We call the component which
had a parent pointer in the edge as the child component while the other
one is referred as parent component. Multiple cases can occur if the edge

“'main edited” — 2017/12/9 — page 5 — #5

Amrutkar et al.

is present in the forest as it would lead to update of the forest to be carried
on in a particular way, by taking the forest invariant into consideration.
We have discussed the cases as follows:

1. If any of the trees is small, i.e., size less than klgo, we then search
any outgoing edge from the tree that connects it to some other tree.

a. If weare unable to find the edge in our current traversal we conclude
that we are in a small connected component that is covered by the
current tree. We then sample a vertex,i.e., add a plain text k-tuple to
that node and make it a different rooted tree component, this is as
shown in Fligure2

b. If the outgoing edge is found, then we merge the smaller component
with the outgoing edge node. We then check for the invariant of the
forest, this can generate the following cases:

(1) If new updated tree component follows the forest invariant then
we do not need to move ahead with the procedure, this is as shown
in Figure3

(2) If new updated tree component does not follow forest invariant
then we traverse the tree upwards from the deepest vertex in the
tree(in this case from our child component) for 2klgo steps,delete
the edge pointing to the parent of the reached vertex, and we create
a new tree.

After performing the forest update, we also need to update the height
of every vertex till the root in the parent component.

The algorithm used for achieving the above goal of removal of the edge
and updating the forest, uses the array of the TreeNode(a node in the forest)
to find a node in the forest, then check for the presence of the node, similar
to the procedure followed in membership query. We make use of the I/ N
matrix to find the node which can be reached by an outgoing edge from the
small component. If the node is not found we make the small component
node as the root, and thus update the TreeNode value with the plain text
k-tuple value. If the outgoing edge node is found, as discussed in the
cases we attach this small component to that rooted tree component. The
update of height of every node till the root node in the parent component
is achieved by finding heights of all the children of every node and then
making an update with the maximum value. We find all the children using
the OUT matrix, then calculating hash value of every child found and
finally checking the parent of those children nodes in the forest against the
current parent component.

Sequence: ACGCACGACG

e N e

{ GAC) -1
\'-—,, 7/4/_ R K-Tuple | Hash
 — ~ Value
(CGA)
e S
s —— ACG 1
A
- CGC 2
w/ CGC \w - A GCA 3
S~ T
T - o CAC 4
G |/ GCA \n
~ C pN 77_7—-/ CGA 5
{ cac GAC 6
N
. p—
Id N ACG
a6) 2
G) B
NV B 7 T
N \ Delete: CACG (2) A
@ o G
af A A e
\) \
) - = D
< (s) ¢ P)
A)
(a)
&

Fig. 1: Case - no update in forest is required

Delete: CGCA

c %
T £

AN

(2) ~ \

\/ (s) — Q A

A A A . ©O)

¢

Fig. 2: Case - 1.a

PN —
(cac Id Y
Ceee) Coned
a/
(3) Coea)
O/ —
c/ G/
N Delete: CACG 4 /
(3))
N (1)
T N
c 7
/ A/
N /
\/ (a) ~
/ (s)

Fig. 3: Case - 1.b.1

3.7 Adding Dynamic Edges

In the previous sections we described about construction fo the data stru-
cture for de Bruijn graph, we would now present how we make this data
structure dynamically. In this section we will basically focus on adding or
inserting an edge and thus updating the graph. For our data structure update
for the graph basically boils down to update of the forest. While updating
the forest we maintain the invariant we considered while constructing the
forest.

Let v, and vy be two vertices in G, e = (vg, vy) be an edge in G,
and let f(vg) =t and f(vy) = j.

Now, considering we want to add e to G. First, we need to update
the IN and OUT matrices we described in section 3.1. So we set to 1
the values of I N[j][b] and OUT[i][a] in constant time. Now coming to
update of the forest, we first check whether v, or vy are in different forest
components of size less than k lg o in O(klgo) time for each vertex. If
both components have size greater than klgo we do not have the need
to update the components since the roots tree will not change. If both
connected components have size less than klgo we merge their trees in
time O(klgo), we also discard the samples at the roots of both tress and
sample a new root in O(k) time.

However, if anyone of the connected component we need to merge
has a size greater than klgo we select it and then we traverse that forest
component to check whether the depth of the vertex is less than 2klgo.
If it turns to be true, then we just connect the two trees as in the previous
case. But if they are not, we will have to traverse the component which
is bigger upwards for klgo steps, we now delete the edge pointing to the
parent of the vertex we reached, thus creating a new tree which we then
merge with the smaller one. This is done in order to maintain our forest
invariant. We also update the height of the every node till the root node, in
the new tree where the smaller component is attached.

The algorithm used for achieving the above goal of adding of the edge
and updating the forest, uses the array of the TreeNode(a node in the forest)
to find a node in the forest, then check for the presence of the node, similar
to the procedure followed in membership query. The case of nodes present
in different forest components having a height less than what is required
by the invariant, is handled by updating the parent pointer of the node. The
update of height of every node till the root node in the parent component
is achieved by finding heights of all the children of every node and then

“'main edited"” — 2017/12/9 — page 6 — #6

short Title

making an update with the maximum value. We find all the children using
the OUT matrix, then calculating hash value of every child found and
finally checking the parent of those children nodes in the forest against the
current parent component.

4 Experimental Evaluation

‘We have used python to build the data structure and the entire source code
is shared on github in a repository. To test the performance of the code,
we have used a system with the configuration, Intel Xeon E5-2676v3 with
2.4 GHz and 32 GB RAM.

4.1 Data Description

‘We will test the data structures on one dataset Escherichia coli str. MG1655
but with different sizes of sequence length considered for evaluation is
summarized in Table 1. To create edge membership queries, we select
multiple k£ + 1 length strings from the datasets. We test the membership
queries with both before and after deletion of the edge, thus to test our
feature of O false positive rate. We have performed evaluation on one
dataset, by considering different sequence lengths of the same dataset and
for different values of k.

Sequence Name Read Count
K12 substr. MG1655 | 1088314
K12 substr. MG1655 | 2142853
K12 substr. MG1655 | 3393761

4.2 Results

We have proposed an experiment with a goal to analyze the behavior of
Fully Dynamic de Bruijn Graph by just developing a partial implemen-
taition on the basis of the research proposed by (?) in the paper “Fully
Dynamic De Bruijn Graph“.This experiment is done on the fastq input
file as described in Section 4.1 with various & values and varied sequence
lengths. We have performed experiments for comparing time required for
each section of the algorithm described in Section 3.x.

Comparison of first level hash function is displayed in Figure4.
According to the results the computation of Rabin-Karp and making it
injective takes a lot of time as compared to our new method proposed later
which uses SHAT1 as the first level hash function. As explained earlier
Rabin-Karp utilizes more memory and time while calculating hashes for
higher values of k, the results in F'igure4 clearly compare the overall
time taken by Rabin-Karp and SHA1 for k = [10, 32] and for a sequence
length of 1.02million. Thus switching to SHA1 was proven to be a better
alternative. In SHA1 we are only considering small number of digits from
the LSB of the hash value generated, in the future work for a huge sequ-
ence length we need to find a better relation between k and the injective
hash function value LSB length.

Further, the comparison of time required to generate an overall hash
function generation with the minimal perferect hash against the various
sequence lengths and values of k is as shown in F'igure5. We can conclude
that the value of k does not play a bigger role than that of sequence
length. The hash function generation time as seen increases linearly. The
future work would include comparing the time for hash function generation
for bigger sequence lengths and values of k, accordingly find a relation
between the value LS B length of SHA1, sequence length and k.

Construction of de Bruijn Graph and represnting them in /N and
OU'T binary matrices also becomes an important factor in the time requi-
red for generation of the data structure proposed. F'igure6 compares the
construction time of binary matrices with the sequence length taken into
consideration, according to the experiment we can conclude there is linear
increase in construction time with the increase in sequence length.

K-TUPLE LENGTH [10,32]

mRabnKap SHA1{last 10

Fig. 4: Comparison of Rabin-Karp with SHA1

Hash Function - Read Length vs
Time

.

SECONDS)

2

READ LENGTH (IN MILLIONS)

mTime(In seconds)

Fig. 5: Comparison of Time against Read Length for Hash function
construction

IN , OUT matrices

N SECONDS)

READ LENGTH (IN MILLIONS)

k=16 mk=32 mk=b4

Fig. 6: Comparison of Time against Read Length for IN, OUT matrices
construction

Forest construction in implementation is done using pointer based
implementation of the TreeNode class. F'igure7 compares the constru-
ction time of the forest with various sequence lengths. Conclusion from the
figure turns out to be a linear relation between the length and time requi-
reed for construction. Finally, the overall construction time of the data
structure for different sequence lengths and different values of k appears
to be linear as seen from FigureS.

One of the experiment with 1.02 million sequence length also captured
the memory required for storing a python Object consisting of the whole
data structure to represent our proposed de Bruijn Graph, i.e, IN,OUT
matrices, Hash function, and Forest TreeNode in a map, takes in
total of 311 MB of disk space.

In the data structure implemented we have also compared the time
required by membership queries for edges of k£ + 1 length. Figure9
shows a comparison between sequence length, k and time required to
perform a membership query when the edge is present and not present in
the dataset.

“'main edited” — 2017/12/9 — page 7 — #7

Amrutkar et al.

The data structure proposed is a part of Fully Dynamic De Bruijn
Graph, that includes addition and deletion of edges. F'igurelO shows a
comparison of deletion time against sequence length and k. Addition and
Deletion of an edge is dependent on the procedure of finding the edge
first which is the membership query, and then performing the procedure
to maintain the Forest invariant. The overall time consumed for this theo-
rotically should be O(klogo) as complexity and practically we get values
in microseconds.

Forest Construction

=]
g
2
&
z
]
H
=

READ LENGTH (IN MILLIONS)

=16 w w64

Fig. 7: Comparison of Time against Read Length for Forest construction

Data Structure Construction

155.89 161

TIME (IN SECONDS)

il

2

REAAD LENGTH (IN MILLIONS})

k=16 m m k=64

Fig. 8: Overall Data Structure construction

4.3 Conclusion

We can conclude that in the proposed algorithm the practical time for con-
struction of the graph increases linearly with the increase in the sequence
length of the dataset. We have only compared the performance of the algo-
rithm for construction and dynamic update of the de Bruijn Graph in the
data structure proposed.

However, we need to be taken into consideration that the relation betw-
een k, sequence length and calculation time of the Hash function is still a
black box for us, as it totally depends on the dataset as input. Theorotical
time complexity for the same cannot be defined based on the data at our
disposal.

Moreover, the memory disk space required to store the python object
is a practical space we have calculated in the experiment. Theorotically
the space required to store our proposed data structure should only take
O(on) bits for the IN and OUT matrices and O(klogo) bits for each
connected component in the forest constructed. Thus from implementation
point of view forest and matrix construction can still be improved in the
future work.

Finally, the partial dynamic behavior of data structure is proposed by
addition and deletion of the edge in the graph and accordingly updating

Membership Query - with edge
present

9%
62 63
57 8
2 = ql .I I
1 2 3

READ LENGTH (IN MILLIONS)

k16 m

Membership query - without edge
present

95
51

: - . - I
1 2

READ LENGTH (IN MILLIONS})

101
k=16 m m k=64

Fig. 9: Comparison of Time against Read Length for membership query

Deletion of edge

N MICROSECONDS)

READ LENGTH (IN MILLIONS)

k=16 m

Fig. 10: Comparison of Time against Read Length for deletion of an edge

the Forest and /N and OUT" matrices. The time consumed for doing
s0 is negligible as compared to the time required for construction of the
graph. Thus we can conculde that “Fully Dynamic De Bruijn Graph*
proposed and implemented in this paper which is in reference to the paper
by (Belazzougui ef al,2016), is definately a great step in comparison to
‘Static de Bruijn Graph® when only edge addition and removal is taken
into consideration.

References

[Armas et al,2016]Armas, E. M., Haeusler, E. M., Lifschitz S., Holanda, M. T.,
Silva, WM.C., and Ferreira, P.C.G. (2016). K-mer maping and de Bruijn Graphs:
The case for velvet fragment assembly .Bioinformatics and Biomedicine (BIBM) .,
16604259.

[Belazzougui et al,2016]Belazzougui, D., Gagie, T., Maekinen, V., and Previtali,
M. (2016). Fully Dynamic de Bruijn Graphs.In String Processing and Information
Retrieval,, pages 145a£.152.

[Bonizzoni et al,2016]Bonizzoni, P., Vedova, G. D., Pirola, Y., Previtali M. and
Rizzi, R. (2016). LSG: An External-Memory Tool to compute String Graphs for
Next-Generation Sequencing Data Assembly.J Comput Biol,,137-49.

[Bowe et al,2012]Bowe, A., Onodera, T., Sadakane, K., and Shibuya, T. (2012).
Succinct de bruijn graphs. In International Workshop on Algorithms in Bioinfor-
matics, ,pages 225a£.“235 Springer.

[Boucher et al,2015]Boucher, C., Bowe, A., Gagie, T., Puglisi, S. J., and Sada-
kane, K. (2015).Variable-order de bruijn graphs. In Data Compression Conference
(DCC), 2015, ,pages 383ak.“392 IEEE.

“'main edited” — 2017/12/9 — page 8 — #8

short Title

[Chikhi, R. and Rizk, G.,2013]Chikhi, R. and Rizk, G. (2013). Space-efficient and
exact de bruijn graph representation based on a bloom filter. Algorithms for
Molecular Biology, 8(1), 22.

[Chikhi et al,2016]Chikhi, R., Limasset, A., and Medvedeyv, P. (2016). Compacting
de Bruijn graphs from sequencing data quickly and in low memory. Bioinformatics,
,i201-1208.

[Conway and Bromage,2011]Conway, T. C. and Bromage, A. J. (2011). Succinct
data structures for assembling large genomes. Bioinformatics, 27(4), 479aL486.

[Flick ef al,2014]Flick, P., Jain, C., Pan, T. and Aluru, S. (2014). Reprint of "A
parallel connectivity algorithm for de Bruijn graphs in metagenomic applications".
Parallel Computing, ,pages 54-65.

[Md Mahfuzer Rahman er al,2017]Md Mahfuzer Rahman, R. S. (2017). HaVec:
An Efficient de Bruijn Graph Construction Algorithm for Genome Assembly.
International Journal of Genomics, ,22.

[Pandey et al,2017]Pandey, P., Bender, M. A., Johnson, R., and Patro, R. (2017).
deBGR: an efficient and near-exact representation of the weighted de Bruijn graph

. Bioinformatics , 2017, ,pages i133-i141.

[Pell et al,2011]Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM,
Brown(2011). Scaling metagenome sequence assembly with probabilistic de Bruijn
graphs. Arxiv preprint arXiv:1112.4193. 2011, ,11.

[Pevzner,Tang& Tesler,2004]Pevzner, Tang& Tesler,2004. De novo repeat classifica-
tion and fragment assembly. Genome Res. 2004 Dec;, 14(12),2510.

[Salikhiv et al,2014]Salikhov, K., Sacomoto, G., and Kucherov, G. (2014). Using
cascading bloom filters to improve the memory usage for de brujin graphs.
Algorithms for Molecular Biology, 9(1), 2.

[Ye et al,2011]Ye, C., Ma, Z. S., Cannon, C. H., Pop, M., and Douglas, W. Y. (2012).
Exploiting sparseness in de novo genome assembly. BMC bioinformatics, 13(6),
S1.

[Ye et al SparseAssembler2,2011]Ye, C., Ma, Z. S., Cannon, C. H., Pop, M., and
Douglas, W. Y. (2012). SparseAssembler2: Sparse k-mer Graph for Memory
Efficient Genome Assembly. BVIC bioinformatics, 13(6), S1.

“'main edited"” — 2017/12/9 — page 9 — #9

